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ABSTRACT 
The number and type of unmanned vehicles sought in military 
operations continues to grow. A critical consideration in 
designing these systems is identifying interface types or 
interaction schemes that enhance an operator’s ability to supervise 
multiple unmanned vehicles. Past research has explored how 
interface types impact overall performance measures (e.g. mission 
execution time), but has not extensively examined other human 
performance factors that might influence human-robot interaction. 
Within a dynamic military environment, it is particularly 
important to assess how interfaces impact an operator’s ability to 
quickly adapt and alter the unmanned vehicle’s tasking. To assess 
an operator’s ability to confront this changing environment, we 
explored the impact of interface type on task switching. Research 
has shown performance costs (i.e. increased time response) when 
individuals switch between different tasks. Results from this study 
suggest that this task switching effect is also seen when 
participants controlling multiple unmanned vehicles switch 
between different strategies. Results also indicate that when 
utilizing a flexible delegation interface, participants did not incur 
as large a switch cost effect as they did when using an interface 
that allowed only the use of fixed automated control of the 
unmanned vehicles.   

Categories and Subject Descriptors 
H.1.2 [Models and Principles]: User/Machine Systems – Human 
factors.  

General Terms 
Measurement, Performance, Design, Experimentation, Human 
Factors. 

Keywords 
Automation, Delegation, Human-Robot Interaction, Playbook, 
Unmanned Vehicles, Interruption, Task Switching 

1. INTRODUCTION 
Many different types of unmanned vehicles (UVs) are being 
developed for use in aerial, ground, and underwater environments. 
Next generation UV systems such as the United States Army’s 

Future Combat Systems (FCS) will incorporate numerous ground 
and air UVs, with the type of UV and team size being 
reconfigurable components tailored to specific combat missions 
[3]. In addition, military objectives are focused on allowing a 
small number of personnel to supervise a large number of UVs. 
These trends in UV development have created a need for 
understanding how operator(s) can effectively control a large 
number of UVs of varying types and capabilities.  

If supervisors are going to be responsible for overseeing multiple 
UVs, it is plausible that they would employ sub-sets of UVs to 
accomplish different objectives. If a supervisor has to switch 
between UV(s) performing the same or different objectives, what 
impact will that have on their performance? Previous research 
indicates that such task switching, or interruptions, can be 
disruptive, particularly if there are insufficient environmental cues 
to allow timely resumption of the interrupted task [2, 15]. In 
addition to switching between tasks, research has shown that 
switching between varying levels of automation can result in both 
positive and negative performance [14]. Therefore, switching 
between different objectives or between different levels of 
automation may positively or negatively impact a supervisor’s 
performance.  

When managing UV systems a supervisor’s ability to effectively 
react to a changing environment therefore, may be contingent 
upon the operator having to (1) switch levels of automation, or (2) 
switch task actions. Level of automation refers to the full or 
partial replacement of a task (i.e. function) previously carried out 
by the human supervisor. For example, UV(s) supervised by 
waypoint-to-waypoint action would represent a lower automation 
level than a UV supervised by pre-programmed behaviors such as 
“patrol border”.  A task action is defined by the strategies 
necessary to achieve a higher level objective. For example, in the 
game of capture-the-flag, the highest level objective is to win the 
game – by capturing the opponent’s flag and returning back to 
own side.  To fulfill this objective a player must have both a 
defensive (protect own flag) and offensive strategy (capture 
opponent flag).  

From these definitions of levels of automation and task action 
(from here on, referred to as strategy) it is possible to describe 
situations in which a switch would occur. For example a switch 
between levels of automation would occur if a supervisor was 
operating a UV in a waypoint-to-waypoint mode and switched to 
more automated condition such as “patrol border”. A strategy 
switch would occur if the supervisor went from an offensive 
strategy to a defensive strategy – or vice-versa. A no-switch 
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condition would occur if a supervisor contentiously used the same 
level of automation throughout - e.g. always operated the UV in 
waypoint-to-waypoint mode. Likewise, if the supervisor 
continuously used and re-engaged a defensive strategy, then there 
would be no strategy switch.   

The impact of switching between different strategies when 
utilizing varying levels of automation has not been extensively 
examined. In particular research has not examined this impact as a 
function of interface types. Interface type can be described by the 
interaction possibilities afforded to a supervisor. For example, an 
interface could constrain an operator’s ability to control a UV, by 
only providing a waypoint-to-waypoint control. Alternatively a 
more flexible interaction scheme would allow the supervisor the 
ability to choose between waypoint control and automated 
control.  

The impact of interface type on overall operator performance 
measures (e.g. mission execution time) has yielded important 
information about interface design and the potential effect on task 
switching. Specifically, interfaces that allow operators to task 
robots flexibly at different levels of automation, or delegation 
interfaces have been found to be especially useful. Delegation 
interfaces enable the human to set an objective and decide 
whether to automate (or not) tasks, dynamically during system 
operations [9]. The PlaybookTM is a specific form of a delegation 
interface that is similar to the sports playbook concept – where 
there is an approved book of plays, and selections of those plays 
are performed by the team leader and executed by the team 
members. To implement PlaybookTM the simulation environment 
RoboFlag (Figure 1) provides the capability to command 
simulated robots [the rest of the paper will use the term robots 
rather than simulated robots], individualy or in groups, using 
either manual control (providing designated endpoints for robot 
travel) or automated control (higher level behaviors, 
preprogrammed) such as “patrol border”.  

 
Figure 1. RoboFlag “play” condition interface. 

In a series of experiments using Roboflag, Parasuraman, Galster, 
Squire, Furukawa, and Miller [13] showed that the type of 
interface available to operators had significant effects on overall 
human-robot performance. They found that, compared to a 
restricted interface in which only automated control was available, 
mission execution times were shorter when the operator was able 
to flexibly use, at times of their own choosing, either manual (i.e. 
waypoint) control of robots or automated control (e.g., such as 
"patrol border"). This benefit was attributed to the operator 

recognizing conditions where the automation was “brittle” and 
needed to be over-ridden by tasking the robot(s) in a different 
way.  Benefits of the delegation interface for mission accuracy 
were also found, and while subjective workload did increase with 
the use of delegation, the increase was not substantial. 

Parasuraman et al. [13] used overall mission execution time as a 
performance metric and did not explore the microstructure of 
human-robot interaction times as a function of interface type. One 
possibility is that different interfaces have different effects on the 
costs of switching between strategies. Many basic cognitive 
psychology studies indicate that when participants have to switch 
from performing one cognitive operation on a set of stimuli (e.g., 
addition) to another operation (e.g., addition), that there is an 
increase in reaction time (RT) following the switch, compared to 
no-switch conditions [1,8,10,11,12 ].  The task-switching 
paradigm has also been used with more complex tasks in which 
operators have to return to a primary task following interruption 
by a secondary task [2]. It is reasonable to suppose, therefore, that 
there will be a switch cost in a multi-robot setting when 
participants switch between different strategies that they use in 
supervising the robots. Moreover, if these switch costs are 
present, how does the type of interface supporting human tasking 
of the robots affect those switch costs?  

One possibility is that switch costs increase more in highly 
automated interaction schemes between the human operator and 
the robot, than with lower levels of automation [4]. For example, 
Crandall, Goodrich, Olsen, and Nielsen [4] estimated higher 
switch costs for point-to-point (P2P) and multiple-waypoint 
tasking of robots in a simulated navigation task, compared to less 
automated interaction involving teleoperation. The basis for this 
expected performance was derived from the interface efficiency 
(the increase in performance of a neglected robot from human 
interaction) of an interaction scheme. Crandall et al. [4] indicated 
that these estimates may not always be accurate, and that further 
work should be conducted to explore such switch costs.  The 
theoretical importance of these interface efficiency predictions 
concerns (1) the time necessary to regain awareness of the robot’s 
state, and (2) how different interaction schemes may influence 
that interaction time.  

Interfaces that allow operators to regain awareness of the robot’s 
state more quickly should reduce switch costs, while interfaces 
that hinder an operator’s ability to regain awareness of the robot’s 
state should increase switch costs. Research with delegation 
interfaces suggests that providing an operator flexibility in making 
decisions on how to task or maintain awareness of a robot’s state 
should reduce switch costs as well as reducing overall mission 
execution time.   

These proposals suggest that it would be worthwhile to re-
examine the effects of delegation interfaces on human-robot 
teaming performance taking switching costs into account. 
Accordingly, we conducted a study on the effects of delegation 
interfaces on human-robot interaction using the RoboFlag 
simulation. We hypothesized that different interface types would 
result in different switch costs. Second, following Crandall et al. 
[4], we also reasoned that lower levels of automated control of 
robots, such as waypoint-to-waypoint control, would incur lower 
switch costs than when participants used automated plays.  In 
addition, based on our previous results [13], we hypothesized that 
a flexible delegation interface would also reduce switch costs 
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compared to restricted interfaces in which the operator only had 
the option of using automated control. 

2. METHODS 
2.1 Participants 
Twelve adults, 7 males and 5 females aged 18 - 22 years (M = 
20.1 yrs., SE = 0.4 years.) served as paid participants. All 
participants reported normal or corrected to normal visual acuity.  

2.2 Experimental Design 
A within-subjects design was employed using interface conditions 
selected from the different combinations of automation level (or 
abstraction) and robot selection (or aggregation) – see Figure 2. 
Automation level was defined as a continuum of tasking action as 
applied to individual or groups of robots.  At a low level, the 
supervisor could use waypoint-to-waypoint movement control of 
the robot (an even lower level would involve telerobotic control, 
but in this study only robots capable of autonomous movement 
were considered). Waypoint movements (i.e. manual control) 
were defined as the selection of some number of robots followed 
by pointing and clicking to a desired location in the field to which 
the robots would move. At a higher task level, the operator tasked 
single or multiple robots with “plays”.  Plays consisted of pre-
planned continuous movement actions and reactions to events 
(e.g. a participant’s robot takes action to not be tagged by an 
opponent robot). At the highest task level, the operator had the 
option to use “superplays,” which consisted of a mix of different 
plays using more than one robot. The second dimension, robot 
selection, was defined as the number of robots to which particular 
tasks were assigned. “Individual” robot selection referred to 
commands given to an individual robot. “All” robot selection 
meant tasking all robots with the same action (i.e. waypoint, play, 
superplay). “Group” robot selection was also possible where tasks 
could be given to groups of robots smaller or equal to that of the 
whole team.  

Figure 2 depicts the experimental conditions and the two 
dimensions of the delegation interface, robot selection (on the X 
axis) and automation level (on the Y axis). A specific X,Y 
coordinate represents an interface condition that is either 
restricted or flexible along those two dimensions. A restricted 
interface is constrained (i.e. non-selectable) to a specific level 
along each dimension.  A flexible interface is either not 
constrained or is constrained on only one dimension.  
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Figure 2. Interface combinations (conditions 1-5) 

For example, the combination of “Individual-Waypoint”, 
identified as Coordinate 1 in Figure 2, represents a restricted 
interface condition – Figure 3 shows the interface presentation for 
an operator. In this condition participants are required to 
supervise individual robots using only waypoint movements; no 
other options are available.  

 

 

Figure 3. Individual Waypoint Interface Condition 

The combination of “Selectable-Play”, identified as Coordinate 4 
in Figure 2, represents a flexible interface condition – Figure 4 
shows the interface presentation for an operator.  In this condition 
participants can flexibly choose how to select robots, whether an 
individual, group, or all; however, the flexibility is limited 
because they are constrained to using only plays.  

 

 

 

 

 

 

 

 

Figure 4. Selectable Play Interface Condition 

As shown in Figure 2, five different interface conditions were 
selected: (1) individual waypoint, (2) individual play, (3) 
selectable waypoint, (4) selectable play, and (5) selectable 
selectable. Conditions 1-2 were selected as representative 
examples for restricted interfaces. Conditions 3-5 were selected 
representative flexible interfaces with condition 5, representing 
the optimal (i.e. most flexible) delegation interface.  

These conditions were combined factorially with the number of 
robots controlled by the participant (four, six, or eight robots). 
Interface condition was treated as a blocked factor while the 
number of robots controlled was randomized within each block. 
Each participant completed two sessions (sessions were conducted 
on the same day), one session consisting of three blocks, and the 
other two blocks. Session and condition were counterbalanced to 
offset order effects. A single block had a total of 15 trials (five 
trials with 4 robots, five with 6 robots, and five with 8 robots) for 
a total of 75 trials.  Participants completed mental workload and 
situation awareness ratings (0 (low) to 100 (high)) after each trial, 
similar to the NASA-TLX [5] and the 3-D SART [14]  subjective 
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measure questionnaires. Robotic usage measures and performance 
data were also logged for each trial.  

Two strategy actions, offensive or defensive, were defined. During 
waypoint (i.e. point-to-point clicking) interface conditions, an 
offensive or defensive task was defined by the end-point (i.e. 
where the robot was directed to move) location. If the robot 
location at which the action was implemented (i.e. x and y 
coordinates) was on the offensive side or opponent area (as seen 
in Figure 1, the mid-line distinguished the participant’s area (left) 
and opponent’s area (right)), then the action was defined as an 
offensive task. If the location was on the defensive side of the 
playing field then it was categorized as a defensive task. During 
interface conditions in which participants could use plays, an 
offensive task was defined as the selection of an offensive play 
(e.g. circle offense). A defensive task was defined as the selection 
of a defensive play (e.g. circle defense).   

A strategy switch occurred when the participant switched from an 
offensive to a defensive strategy or from a defensive to an 
offensive task.  In contrast, a task was considered a no-switch task 
when the same task was repeated (e.g. offensive, offensive, 
offensive).  For each trial, grand averages were computed for 
switch and no-switch tasks by summing the times taken for each 
task action and dividing by the number of actions for each.  Since 
the first task action performed during each trial did not have a 
previous task action to which it would be referenced those times 
were not included in the computations (see Table 1 for example 
computations, and Figure 5 for illustration).  

 

Table 1. Computation of mean switch and no-switch times 

Action(Action Type) 
Total 
Time 

Switch 
Time 

No-Switch 
Time 

Defensive (First Action) 2.17 - - 

Defensive (No-Switch) 3.83 - 1.66 

Defensive (No-Switch) 4.5 - 0.67 

Offensive (Switch) 6 1.5 - 

Offensive (No-Switch) 6.57 - 0.57 

Defensive (Switch) 9.7 3.13 - 

 

 

Type (NS = No-Switch Time, S = Switch Time) 

Strategy (D = Defense, O = Offense) 

Type            N/A              NS          NS        S          NS             S 

                           

Strategy       D             D            D         O         O             D         

Time (s)           2.17         1.66        0.67      1.5       0.57          3.13                        

Figure 5. Illustration of Strategy Usage as defined by Switch 
and No-Switch Actions 

Apparatus and Procedures  
The RoboFlag simulation ran on two separate PCs communicating 
under TCP/IP protocol. The participant used one PC while 
another PC ran the opposing team script, and recorded log files. 
To observe participants’ actions unobtrusively, an additional 
monitor was used by the experimenter for observation. The basic 
RoboFlag objectives and architecture were unchanged from 
previous studies [13], but changes made to the RoboFlag 
environment are described below. Of the five experimental 
conditions selected, two represented restricted interfaces 
(individual waypoint, individual play), and three flexible 
interfaces (selectable waypoint, selectable play, and selectable 
selectable).  The opponent force consisted of 6 robots that were 
scripted to have a mixed “posture”, defending their flag half the 
time and going on offense during the remaining half. When the 
opponent team conducted offensive maneuvers, the attacking 
routes of the robots were varied in an unpredictable manner.  

Participants received instruction (but with no specific strategy 
guidance) on interface features and procedures for robot selection 
and movement. Three training trials were conducted for each 
condition for each robot number (4, 6, and 8). During 
experimental trials, participants were told the number of robots 
before each trial. A trial concluded when either the participant or 
opponent had captured the flag and crossed the mid-line to their 
side. 

3. RESULTS  
Given the limited space for this paper, results are reported only 
for:  (1) overall mission execution time, (2) Fitt’s law movement 
calculations, (3) number of strategies used during a trial, and (4) 
switch / no-switch results. Mission execution time data were 
submitted to an ANOVA and resulted in a main effect for 
Interface condition, F(4,44) = 4.29, p < .01. A planned 
comparison between the manual only (individual waypoint and 
selectable waypoint) and automated only conditions (individual 
play and selectable play) revealed a significant effect t(11), = -
4.60, p < .001, with mission execution time significantly longer 
for the automated only condition, than the manual only condition 
(see Figure 6).   This result illustrates the same general effect 
obtained by Parasuraman et al. [13]. When participants were 
restricted to the use of automated plays only, overall human-robot 
performance was less efficient. Moreover, when operators could 
flexibly use either waypoint control or automated plays (selectable 
all), mission time was reduced, although in this study this was 
only a marginally significant effect. 

Figure 6. Mission Time for Interface Conditions 
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We also analyzed the time it took operators to switch from one 
type of strategy to the other (e.g., offensive to defensive), and 
compared these to cases where participants implemented strategy 
actions that did not switch (e.g., offensive to offensive). Because 
the physical action for implementing a strategy was a mouse click, 
the motor movement time in moving the cursor needed to be 
assessed before switch and no-switch times could be analyzed. 
Fitts’ Law was used to calculate movement time – in this case the 
time required to move the cursor from one position on the 
graphical user interface (GUI) to another position. The specific 
version of Fitts’ Law known as Shannon’s formulation was used – 
MT = a + b log2(2A/W + 1),where MT is the movement time, a,b 
are the regression coefficients for a particular user and mouse, A is 
the distance of the movement from start to target center, and W is 
the width of the target.  The regression coefficients used for point 
and click mouse moves were taken from Mackenzie’s, POINT-
SELECT [7].  The GUI movement times for the best and worst 
case are provided in Table 2. The best case GUI movement time 
represented a situation where the participant made a very small 
motor movement, such as when the operator changed a play 
without having to de-select the robot. For example, if the operator 
switched from a circle offense play (top most play in Figure 1) to 
a circle defense play then the operator only needed to move 0.80 
inches on the GUI. If however, the operator selected a robot at the 
left most bottom corner of the playing field, and then selected 
circle offense, the action required a motor movement of 6.4 
inches. This represented a worst case situation.   

Table 2. Best and Worst Case Movement Time Predictions 

Fitts’ Law 
Calculations Total (seconds) 

A value 
(inches) 

W value 
(inches) 

Best 0.43 0.80 0.63 

Worst 0.81 6.40 0.63 

 

This analysis indicates that the average movement time to execute 
a strategy change was relatively short (~ 0.6 s on average). As 
shown later, the computed switch times were considerably longer 
(from 2 to 7 s) than the mean motor movement time. Therefore the 
contribution of changes in motor movement time to changes in 
switch time with changes in the interface are likely to have been 
small.  

We next analyzed changes in the number of strategy actions for 
the different interface conditions and number of robots. The 
absolute counts for number of actions performed were submitted 
to a 2 X 5 X 3 analysis of variance (ANOVA) with factors of 
strategy switch type (switch, no-switch), interface condition 
(individual waypoint, individual play,  selectable waypoint, 
selectable play, and selectable selectable), and number of robots 
(4,6,8). There was a significant main effect for strategy type, 
F(1,11) = 24.32, p < 0.01. Indicating that significantly more no-
switch strategy actions (M = 21.57, SE = 3.58) than switch 
strategy actions (M = 3.58, SE = 0.28) were performed.  There 
was also a significant main effect of interface condition on actions 
performed, F(4,44) = 5.35, p < 0.05. As illustrated in Figure 7 
most of the variation between the number of actions performed 
seems to be due to the no-switch rather than the switch strategy 
actions.  

 
Figure 7. Number of Actions for continuous and switch tasks 

by Interface Conditions. 
The only other significant effect obtained was for the number of 
robots, F(2,22) = 3.90, p < 0.05.  Post hoc pairwise comparisons 
with a Bonferroni adjustment gave a significant effect for robot 
number, p < 0.05; participants performed more actions with 8 
robots (M = 13.90 actions, SE = 2.13) than with 4 robots (M = 
11.67, SE = 1.93) [see Figure 8]. 

 
Figure 8. Number of Actions for Number of Robots. 

 

To assess the changes in switch and no-switch times with 
interface type and robot number, a 2 X 5 X 3 ANOVA was 
computed with the same factors as before. Significant main effects 
were obtained for task type, F(1,11) = 78.50, p < 0.01 and 
interface condition, F(4,44) = 20.13, p < 0.01. The only other 
significant effect was the interaction between strategy type and 
interface condition, F(4,44) = 10.88, p < 0.01 [see Figure 9]. As 
expected, participant’s times were longer for switch strategies (M 
= 4.59 s, SE = 0.29 s) than for no-switch strategies (M = 1.87 s, 
SE = 0.18 s). 
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Figure 9. Switch and No-Switch times for Interface 
Conditions. 

To examine the hypothesis that switch cost effects were lower for 
manual than automated conditions, pairwise comparisons were 
conducted between the manual, automated, and selectable 
selectable. As expected there were no significant differences 
obtained for no-switch strategies (p > 0.02, α = 0.05/3), and three 
significant differences for switch strategies. The manual switch 
task (M = 2.47 s, SE = 0.26 s) was faster than the automated 
switch task (M = 6.55 s, SE = 0.44 s), and selectable selectable 
switch task (M = 4.40 s, SE = 0.62 s), t(11) = 8.50, p < 0.01 and 
t(11) = 3.16, p < 0.01 respectively. In addition the selectable 
selectable switch task action, while slower than the manual switch 
task, was significantly faster than the automated switch task, t(11) 
= 3.45, p < 0.01 [see Figure 10]. These findings indicate actions 
or tasks that are more specific in nature (e.g. waypoint action) are 
less complex and therefore reduce the switch cost times associated 
with those tasks. However, automated tasks appear to add 
additional complexity (e.g. an operator has to consider the impact 
of an automated play with multiple tasks associated with it) that 
results in increased switch cost times.        

  
Figure 10. Switch times for Manual, Selectable Selectable, and 

Automated Interface Conditions. 
 

4. DISCUSSION  
The present study of multi-robot control using the RoboFlag 
simulation examined the effects of interface type and number of 
robots controlled on overall mission execution time as well as task 

switching times. Consistent with our previous findings [13], 
restricting participants to the use of an interface that allowed only 
automated plays was associated with longer mission completion 
times. At the same time, there was a trend for reduced mission 
completion times when participants could flexibly use either 
waypoint control or automated plays, providing general support 
for the efficacy of delegation interfaces. 

We also examined switch times for instances when participants 
implemented a different tasking action, e.g., from offense to 
defense, on a robot or group of robots. The results showed that 
such switch times were relatively long, on the order of 2-7 s. 
These delays represent a significant switch cost, because switch 
times were significantly longer than no-switch times (1-2 s), when 
participants initiated successive robot tasking actions that were 
the same (e.g., both offensive), and substantially longer than the 
mean motor movement time required to execute the action using a 
mouse click (~ 0.5 s). These values for switch costs are 
comparable to those reported in previous studies with complex 
multi-task [2] and robot simulations [6]. 

The results supported the general hypothesis that switch costs 
would vary with interface type. The range of variation was 
considerable (2-7 s), indicating that interface type could be a 
major limiting factor in human supervision of multiple robots, 
particularly in high-tempo operations. Given the goal of many 
programs of having a single operator supervise as many robots as 
possible, these findings indicate that single operator control of 
many robots may not be feasible for certain interface types.  
Second, it was hypothesized that switch costs would be greater 
when participants had to use automated plays than for interaction 
at a lower of automation, as in waypoint-to-waypoint control.  The 
results supported this prediction as well. Whereas mean switch 
time for the individual manual condition was about 2 s, switch 
time for the individual play condition was about 6 s, a three-fold 
increase. The increase in switch time for more automated levels of 
interaction with multiple robots is also consistent with the 
findings of Crandall et al [4], who compared teleoperated, 
waypoint-to-waypoint, and multiple-waypoint methods of robot 
interaction in a simulated navigation task.   

In addition, we hypothesized that a flexible delegation interface, 
where participants could choose between different task levels, 
would reduce switch costs compared to restricted interfaces. This 
prediction was partially supported. In our previous study [13], we 
found that when participants were provided the ability to delegate 
(or not) task functions to automation, they benefited from being 
able to use manual control flexibly with automation to reduce 
their overall mission execution time. Likewise, when participants 
in the present study were provided the ability to delegate, they 
received a similar benefit in the form of a reduced switch cost, 
from 6 s (in the individual play condition) to about 4 s (in the 
selectable selectable condition).  

The task switching measure used in the present study, following 
the procedure developed by [2] provides a framework for 
exploring timing differences associated with the use of different 
interfaces for controlling multiple UVs. The metric provided 
useful information on the relative merits of different delegation 
interfaces beyond that gained from analysis of overall mission 
completion time.  Future research should seek to investigate more 
specifically the characteristics of task switching in human-robot 
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interaction, and to examine how task switch costs impact global 
measures such as mission execution time or mission success.  
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